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Summary

• Extension of the unified skew-normal (SUN) distribution (Arellano-Valle &
Azzalini, 2006).

• Perturbed unified skew-normal (pSUN) distribution.

. Replace the mulitvariate normal variables that drive a stochastic represen-
tation of the SUN distribution with scale mixtures of normals.

. Gibbs sampler to simulate from the pSUN distribution.

. Motivation: explore a general class of conjugate priors for the regression
coefficients in binary regression models.

. A bit difficult to envision incorporating prior beliefs into the general
version of the pSUN distribution (or the SUN distribution for that matter),
but useful priors are included as special cases.

• Binary regression model: yi | β
ind.∼ Bernoulli(Λ(xT

i β)), i = 1, ..., n.

. The pSUN is a conjugate prior for β, provided the inverse link Λ is the
c.d.f. of a scale normal mixture.

2 / 4



Summary

• Extension of the unified skew-normal (SUN) distribution (Arellano-Valle &
Azzalini, 2006).

• Perturbed unified skew-normal (pSUN) distribution.

. Replace the mulitvariate normal variables that drive a stochastic represen-
tation of the SUN distribution with scale mixtures of normals.

. Gibbs sampler to simulate from the pSUN distribution.

. Motivation: explore a general class of conjugate priors for the regression
coefficients in binary regression models.

. A bit difficult to envision incorporating prior beliefs into the general
version of the pSUN distribution (or the SUN distribution for that matter),
but useful priors are included as special cases.

• Binary regression model: yi | β
ind.∼ Bernoulli(Λ(xT

i β)), i = 1, ..., n.

. The pSUN is a conjugate prior for β, provided the inverse link Λ is the
c.d.f. of a scale normal mixture.

2 / 4



Summary

• Extension of the unified skew-normal (SUN) distribution (Arellano-Valle &
Azzalini, 2006).

• Perturbed unified skew-normal (pSUN) distribution.

. Replace the mulitvariate normal variables that drive a stochastic represen-
tation of the SUN distribution with scale mixtures of normals.

. Gibbs sampler to simulate from the pSUN distribution.

. Motivation: explore a general class of conjugate priors for the regression
coefficients in binary regression models.

. A bit difficult to envision incorporating prior beliefs into the general
version of the pSUN distribution (or the SUN distribution for that matter),
but useful priors are included as special cases.

• Binary regression model: yi | β
ind.∼ Bernoulli(Λ(xT

i β)), i = 1, ..., n.

. The pSUN is a conjugate prior for β, provided the inverse link Λ is the
c.d.f. of a scale normal mixture.

2 / 4



Summary

• Extension of the unified skew-normal (SUN) distribution (Arellano-Valle &
Azzalini, 2006).

• Perturbed unified skew-normal (pSUN) distribution.

. Replace the mulitvariate normal variables that drive a stochastic represen-
tation of the SUN distribution with scale mixtures of normals.

. Gibbs sampler to simulate from the pSUN distribution.

. Motivation: explore a general class of conjugate priors for the regression
coefficients in binary regression models.

. A bit difficult to envision incorporating prior beliefs into the general
version of the pSUN distribution (or the SUN distribution for that matter),
but useful priors are included as special cases.

• Binary regression model: yi | β
ind.∼ Bernoulli(Λ(xT

i β)), i = 1, ..., n.

. The pSUN is a conjugate prior for β, provided the inverse link Λ is the
c.d.f. of a scale normal mixture.

2 / 4



Summary

• Extension of the unified skew-normal (SUN) distribution (Arellano-Valle &
Azzalini, 2006).

• Perturbed unified skew-normal (pSUN) distribution.

. Replace the mulitvariate normal variables that drive a stochastic represen-
tation of the SUN distribution with scale mixtures of normals.

. Gibbs sampler to simulate from the pSUN distribution.

. Motivation: explore a general class of conjugate priors for the regression
coefficients in binary regression models.

. A bit difficult to envision incorporating prior beliefs into the general
version of the pSUN distribution (or the SUN distribution for that matter),
but useful priors are included as special cases.

• Binary regression model: yi | β
ind.∼ Bernoulli(Λ(xT

i β)), i = 1, ..., n.

. The pSUN is a conjugate prior for β, provided the inverse link Λ is the
c.d.f. of a scale normal mixture.

2 / 4



Summary

• Extension of the unified skew-normal (SUN) distribution (Arellano-Valle &
Azzalini, 2006).

• Perturbed unified skew-normal (pSUN) distribution.

. Replace the mulitvariate normal variables that drive a stochastic represen-
tation of the SUN distribution with scale mixtures of normals.

. Gibbs sampler to simulate from the pSUN distribution.

. Motivation: explore a general class of conjugate priors for the regression
coefficients in binary regression models.

. A bit difficult to envision incorporating prior beliefs into the general
version of the pSUN distribution (or the SUN distribution for that matter),
but useful priors are included as special cases.

• Binary regression model: yi | β
ind.∼ Bernoulli(Λ(xT

i β)), i = 1, ..., n.

. The pSUN is a conjugate prior for β, provided the inverse link Λ is the
c.d.f. of a scale normal mixture.

2 / 4



Summary

• Extension of the unified skew-normal (SUN) distribution (Arellano-Valle &
Azzalini, 2006).

• Perturbed unified skew-normal (pSUN) distribution.

. Replace the mulitvariate normal variables that drive a stochastic represen-
tation of the SUN distribution with scale mixtures of normals.

. Gibbs sampler to simulate from the pSUN distribution.

. Motivation: explore a general class of conjugate priors for the regression
coefficients in binary regression models.

. A bit difficult to envision incorporating prior beliefs into the general
version of the pSUN distribution (or the SUN distribution for that matter),
but useful priors are included as special cases.

• Binary regression model: yi | β
ind.∼ Bernoulli(Λ(xT

i β)), i = 1, ..., n.

. The pSUN is a conjugate prior for β, provided the inverse link Λ is the
c.d.f. of a scale normal mixture.

2 / 4



Bayesian binary regression

• MCMC with data augmentation (normal prior for β)

• Probit link: β | z, data ∼ Np, given normally distributed latent variables zi

(Albert & Chib, 1993).

• Logit link: β | z, u, data ∼ Np, given latent variables zi | ui
ind.∼ N(xT

i β, (2ui)
2),

and ui
i.i.d.∼ KS (Holmes & Held, 2006).

• Logit link: β | v, data ∼ Np, given PG latent variables vi (Polson et al.,
2013).

• Under the probit link, and a normal prior, β | data ∼ SUNp,n (Durante, 2019).

. More generally, conjugate SUN prior for β under the probit link.

. Independent sampling from p(β | data) (practical for small/moderate n).

• New contribution: results for the pSUN prior (Onorati & Liseo, 2022).

. Extends the story to symmetric links, including the probit and logit.

. Requires a Gibbs sampler to explore p(β | data).
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A few comments

• Expressions for E(β | data) or E(βk | data) under special cases of the prior?
Can they be efficiently computed without pSUN sampling?

• Computing: general approach or algorithms tailored to important special cases?
software?

• Extensions?

• Semiparametric model: nonparametric scale normal mixture for the inverse
link + pSUN prior for β.

• General model settings with binary regression as a component (binary lon-
gitudinal responses, nonparametric mixtures, ordinal regression ...)

• Many thanks to Brunero for his contribution to the conference, and congrats to
Paolo & Brunero for a nice paper!
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